
Bug Reproduction: A Collaborative Practice
within Software Maintenance Activities

Dhaval Vyas1, Thomas Fritz2 and David Shepherd3

Abstract. Software development settings provide a great opportunity for CSCW
researchers to study collaborative work. In this paper, we explore a specific work
practice called bug reproduction that is a part of the software bug-fixing process.
Bug reproduction is a highly collaborative process by which software developers
attempt to locally replicate the ‘environment’ within which a bug was originally
encountered. Customers, who encounter bugs in their everyday use of systems,
play an important role in bug reproduction as they provide useful information to
developers, in the form of steps for reproduction, software screenshots, trace logs,
and other ways to describe a problem. Bug reproduction, however, poses major
hurdles in software maintenance as it is often challenging to replicate the contex-
tual aspects that are at play at the customers’ end. To study the bug reproduction
process from a human-centered perspective, we carried out an ethnographic study
at a multinational engineering company. Using semi-structured interviews, a ques-
tionnaire and half-a-day observation of sixteen software developers working on
different software maintenance projects, we studied bug reproduction. In this pa-
per, we present a holistic view of bug reproduction practices from a real-world set-
ting and discuss implications for designing tools to address the challenges devel-
opers face during bug reproduction.

1 Introduction

Companies with a large software portfolio have in-house maintenance support.
Their software maintenance divisions frequently get ‘bugs’ from customers as
well as from testing and development teams who are continuously working to-
wards adding new requirements and improving existing products. Maintenance di-
visions use bug tracking systems where all information related to bugs is stored:
starting from when it was encountered to when it was implemented in a product.

Bug reproduction is a highly collaborative activity that starts at an early stage
of bug-fixing process. When a bug is encountered, the bug reporter provides rele-
vant information about the bug in a bug tracking system and describes how it can

1 Queensland University of Technology, Brisbane, Australia. d.vyas@qut.edu.au
2 University of Zurich, Zurich, Switzerland. fritz@ifi.uzh.ch
3 ABB Corporate Research, Raleigh, USA. david.shepherd@us.abb.com

mailto:d.vyas@qut.edu.au
mailto:fritz@ifi.uzh.ch
mailto:david.shepherd@us.abb.com

2

be recreated. Often detailed description of problems, software versions, screen-
shots, step-wise guidance or navigation is provided by attaching images, videos
and textual information [4, 5, 12]. Using this information, developers locally re-
create the scenario in which the bug was detected. When developers are able to
successfully reproduce the bug on their own machines, they can answer several
questions related to where a problem is located in the code and how it can be
fixed. Previous studies have shown that bug reports often lack useful information
that may be needed for bug reproduction [5]. Additionally, it is sometimes diffi-
cult for customers to know what type of information a software maintenance team
will require in order to fix a bug. In cases where it may not be possible to repro-
duce a bug easily, developers ask for more details from customers. This causes de-
lays and overheads in product development and maintenance.

In order to study the bug reproduction process in detail, to explore major hur-
dles and challenges developers face and to elicit ideas for developing tools to sup-
port bug reproduction, we carried out an ethnographic field study with sixteen de-
velopers in a software maintenance division of an engineering conglomerate. We
studied their bug reproduction practices using semi-structured interviews, in-situ
observation sessions and a questionnaire. Our results provide a holistic view on
the bug reproduction process, where we provide insights into what type of infor-
mation is provided by customers, how bug reproduction is carried out and how
that helps in fixing bugs. Our results show that insufficient information from cus-
tomers, tedious logistical efforts for bug reproduction setups and the contextual is-
sues of bugs are the three major challenges to bug reproduction. We also found
that developers find ‘steps for reproduction’ and ‘trace logs’ to be the most im-
portant information for reproducing bugs. Surprisingly, our findings show that bug
reproduction contributed towards improving developers’ confidence for going
about fixing bugs. Based on our findings, we provide several design implications
such as the use of tracing and monitoring mechanisms at customers’ site to allow
quick access of useful information for developers, adding templates and annota-
tions to bug tracking systems and connecting bug tracking systems with the work
environments of relevant stakeholders involved in the bug reproduction cycle.

In the rest of this paper, we start by describing some related work in this field.
We then describe our approach and methods used for this field study, followed by
our findings. Finally, we provide implications for providing adequate support for
bug reproduction activities.

1.1 Bug Reproduction & CSCW

The topic of bug reproduction has traditionally been studied in the software engi-
neering and software maintenance communities. A study such as this can be rele-
vant for the CSCW community for the following three reasons:
1. Study Collaboration: Bug reproduction presents an interesting case of collab-

orative practices between developers and bug reporters (customers or testers),

3

where communication is rarely direct and often mediated through a bug track-
ing system or through other stakeholders such as product team managers and
customer support professionals. The information communicated is often of a
multi-modal nature (screen-shots, videos, texts) and is highly dependent on
the context within which a bug is encountered.

2. Empirical Value: Unlike the methods used in the traditional software engi-
neering research [4, 16, 17, 18, 21], we apply an ethnographic approach to
gain access to the real-world practices of developers in their ongoing bug-
fixing projects. This research will allow us to gain a holistic view of the bug
reproduction process, where we can contribute towards an improved empiri-
cal foundation for understanding software bug-fixing practices.

3. Design Ideas: A user-centered approach such as ours would allow us to con-
nect the empirical findings gained from ethnographic work to novel designs
and tool ideas that can improve current practices of bug reproduction. This in
fact is our main goal – to develop better tools to improve productivity and ef-
ficiency.

2 Related Work

In the following, we provide a short literature review on bug-fixing. We highlight
the contributions from the CSCW community for studying software development
activities and then move onto the traditional software engineering literature.

CSCW researchers have long been highlighting different collaborative aspects
of software development practices. Empirical studies on groupware technologies
have emphasized the role of group awareness [9], work dependencies [13], and
aspects relating to collaborating work cultures [22]. Ethnographic methods are
used to study specific practices related to, for example, the use of configuration
management tools [8], workflow management activities [10] and software testing
practices [20]. Within software development and maintenance teams, bug tracking
systems serve as the medium through which not only developers and customer can
coordinate their activities but other stakeholders such as product managers, testers,
and customer support professionals can also interact and communicate. There are
several studies on bug tracking systems done within the HCI/CSCW community
[2, 8,11, 24, 26]. Based on a qualitative study involving 15 developers, Bertram
[3] highlighted that bug tracking systems were used as 1) a knowledge repository
where activities from different stakeholders were getting stored, 2) a boundary ob-
ject [25], to fulfill the needs of different stakeholders, and 3) a communication and
coordination hub. Studies have shown that bug tracking system serves as a tool to
negotiate specific details of bug-fixing activities [10].

Within the software engineering community, Zhang et al. [27] explored the
most important factors that affect the bug-fixing process: type of bug, severity of
bug, operating system, and description of bugs. The role of software users (or cus-
tomers) in bug-fixing is also emphasized in several studies. Developers require

4

different types of information from users in order to fix bugs. Bettenburg et al. [4]
explored a set of information required in a bug report by collecting responses from
466 developers. Their study highlighted that bug reports often have a strong mis-
match between what developers needed and what information was provided by
users. Based on the analysis of 600 bug reports, Breu [5] developed categories of
questions that are asked by developers to the users who reported bugs. Frequently
asked questions were related to missing information, clarifications, triaging, de-
bugging, correction, status enquiry, resolution and process. Other similar studies
included the use of card sorting methods [16] for exploring how bugs can be re-
ported and resolved in the form of design recommendation for new bug tracking
systems.

Several studies have explored the importance of different information required
for bug reproduction, such as trace logs and steps to reproduce. For example,
Schroter et al. [23] carried out an empirical study on the usage of stack traces by
developers from the ECLIPSE project and found that bug reports with stack traces
are fixed faster than bug reports without them. They also found that bugs are like-
ly to be found in one of the top ten stack frames. Herbold at al. [12] developed a
non-intrusive, easily to integrate GUI-based monitoring mechanism which would
automatically collect usage logs of different user activities and allow replaying
them for the purpose of reproducing bugs whenever they occur. It is also im-
portant to note that in some cases it might be embarrassing for companies when
such privacy-centric data is reviled. To support this need, Casto et al. [6] devel-
oped a mechanism by which software developers are provided with new input val-
ues that can be as useful as the original input values that can be used in bug repro-
duction. This way less information is revealed to developers and companies’
privacy is also protected.

3 Field Study

In our research, we aimed at gaining access to developers’ natural practices to be
able to learn about their software bug-fixing and in particular bug reproduction
practices. We believed that an in-situ account on developers may shed light on the
social and situated nature of software bug-fixing activities.

3.1 Methods

Over a period of three months, we conducted an ethnographic field study of 16
software developers working in a software maintenance division of a multinational
engineering conglomerate. These developers belonged to 8 different software
product teams. We used the following three methods in our research.

5

1. In-situ Observations: We video recorded developers’ real-time software bug-
fixing activities at their workspace. We started our observations from the be-
ginning when a bug was reported and assigned to developers. These in-situ ob-
servations in most cases lasted half-a-day; however, in some cases we pro-
longed our interactions with the developers to follow the complete bug-fixing
process. At the end of our sessions, we collected all artefacts that were being
used in their bug-fixing activities such as bug reports and related documents.

2. Semi-structured Interviews: Following the observations, we carried out
semi-structured interview at developers’ workspace, where we asked our par-
ticipants questions related to their bug-fixing processes and practices. We
aimed at getting insights into their use of different tools, their collaboration and
communication practices, their use of bug tracking systems, and so on. Addi-
tionally, we asked participants to give an account of at least two bugs that they
recently fixed. These interviews lasted for 45 minutes to 1 hour per participant.

3. Questionnaire: At the completion of the observation and interview sessions,
we sent out a questionnaire to all 16 participants. We developed this question-
naire using the inputs from observation and interview sessions. The question-
naire used five-point Likert scale and focused on understanding participants’
preferences related to bug reproduction practices, e.g. what type of information
is most useful, how bug reproduction helps in following bug-fixing activities.

3.2 Participants

In the facility where we were carrying out our research, there were more than 800
software developers working on a large variety of products from domains such as
automation, power and robotics. Our selection of developers aimed at adding het-
erogeneity in our data sample and hence allowing generalizability in our findings.
To recruit software developers for our study, we contacted division managers of
these different product domains and using their help recruited developers from dif-
ferent software development teams. We also ensured that we selected no more
than two developers from one team.

Product Type No. of Developers No. of Bugs Studied
SCADA Products 5 6 – Observation; 6 – Interviews
Automation SW 1 3 2 – Observation; 6 – Interviews
Automation SW 2 4 3 – Observation; 3 – Interviews
Robotics SW 1 2 – Interviews
Power Product 3 3 – Observation; 6 – Interviews
Total 16 39

6

Table 1 . Participant Details.

Table 1 provides participant details of our field study. In general, we involved
developers who were working on SCADA (supervisory control and data acquisi-
tion), automation, power and robotics products. From these 16 developers, we
studied 39 bug-fixing cases taking into account the natural practices of these de-
velopers. From our field study, we collected a large amount of videos, field and
interview notes, bug reports and bug-related artefacts. The results presented below
were obtained through a qualitative analysis [7] of our collected data. We started
by creating a large affinity wall [14] using post-its and used open-coding to derive
larger concepts and categories.

4 Results

From our field study, we derived several interesting perspectives on bug reproduc-
tion and were able to identify important social dimensions to the bug reproduction
process.

4.1 Social process of bug reproduction

Software bug reproduction is an activity developers perform to locally recreate the
situation in which a bug (or a defect) was originally observed at the site of a cus-
tomer or a tester. It is a widely-used practice in software maintenance and typical-
ly starts at an early stage of big fixing activities. It is a highly social activity be-
cause it involves communication and collaboration between several actors,
including developers, testers, customers, product managers, customer support pro-
fessionals among others.

Figure 1: The social process of bug reproduction.

7

In our study, we attempted to capture a holistic view of bug reproduction. Figure 1
shows a high level view of the social side of the bug reproduction process, as re-
ported by the developers who participated in our field study. This figure particu-
larly focuses on the customer reported bugs. When a customer encounters a bug,
he/she reports it to the customer support offered by the software company. Here,
the customer provides all the basic information about the scenario within which
the bug occurred. Using these details, the customer support professionals check
the feasibility of the bug and check if all the software configurations are in place.
At this stage, they would provide a fix, if the problem is simple such as a wrong
configuration was used or date format mismatched. If they cannot fix the prob-
lem, they report it into the bug tracking system. Customer support professionals
are not developers themselves; hence they cannot solve any technical problems.
They work as a mediator between customers and developers. While the bug is re-
ported into the bug tracker, the customer support team adds details such as soft-
ware version and module, OS version, description of the problem and steps for re-
production into the bug tracker. If such information is not added the customer
support professionals collaborates with the customer and adds this information.
Once a bug is reported into a bug tracking system, it is assigned to a responsible
product team manager based on the matching of appropriate software modules.
The product team manager also does a feasibility check on the bug and assigns it
to an adequate developer to fix this bug. As a part of an initial analysis of the bug,
the developer starts the bug reproduction process utilizing the information that is
provided in the bug tracker. If the developer needs more information regarding the
bug, he contacts the customers using the help from customer support team. Devel-
opers rarely have direct contacts with the customer, but if needed they can also
have direct phone calls or video chats with the customer.

4.2 Perceived advantages of bug reproduction

The software developers who participated in our field study provided useful in-
sights on how they perceived the use of bug reproduction in their everyday bug-
fixing activities. Overall, we elicited three perceived advantages of bug reproduc-
tion: 1) understanding the problem; 2) fixing bugs in a quick manner; and 3) in-
creasing confidence level of developers.

One of the reasons for carrying out bug reproduction is for developers to see
how and why a bug occurs and to have a better understanding of the bug. While
reproducing bugs developers gain the firsthand experience of steps that lead to a
bug and how the bug behaves. The power and automation products of the compa-
ny that we studied were being run in multiple industries such as minerals, pulp and
paper, cement, and oil & gas domains. Hence, when a bug is reported by a cus-
tomer, it is only through bug reproduction developers can know how the software
was being used and what configuration and settings were in place at the custom-
er’s site. In many cases, the description of a bug or its screenshot provided in a

8

bug tracking system may not be enough for a developer to sufficiently understand
the bug. It is through reproducing bugs that developers can develop a better under-
standing of the problem at hand. The following is a comment from a developer,
which indicates our finding:

“If there is a UI related or a printing related issue then bug reproduction may not be
necessary. But if I get issue related to system crash or similar then I need to investigate
how the software is configured on the site of the customer. We need to interact with them
and get required information.”

More importantly, a successful bug reproduction allows developers to fix bugs
in a quicker manner. While debugging, a successful bug reproduction allows de-
velopers to better locate the precise area in the code where the problem is located.
Bug reproduction saves a considerable amount of time as developers can focus on
specific parts and flows of the code that need attention. A developer commented:

“There are thousands of lines of code in this software and it is impossible to know
everything in it because some of the code is legacy. With bug reproduction we can limit
our efforts. We need not find each and every flow inside the code. If we know that these
are the steps to reproduce the bug then we can pinch on that particular flow in the code
and target only that flow to solve the problem.”

The third benefit of bug reproduction was that it increased the perceived confi-
dence level of developers before actually fixing a bug. Successful bug reproduc-
tion meant that details provided by the bug reporter are enough and the developer
can directly focus on the fix. This part will be elaborated in the later part of this
paper.

5 A holistic view of bug reproduction

5.1 When a bug is reported…

When a fault occurs during use, it is reported in a bug tracking system. A bug can
be anything from a system crash or hang to any inconsistent behavior of a system.
The bug initiator uses the bug tracking system to provide a description of the prob-
lem, details of the system configuration (e.g. product version, OS version), steps
for recreating the bug, screenshots of the system interface and pointers to the loca-
tion of the problem and other relevant information. Often this information is added
to the bug report in the bug tracker; however, in some cases information is trans-
ferred via emails and file transfers. The bug tracking system serves as a common
tool for multiple objectives for different stakeholders [1, 25].

Figure 2 is an excerpt from a bug report where the bug initiator has provided
screenshots of a software that had a bug in it and pointed out certain fields in red
color to indicate the problem. When a bug is reported by a tester or a developer,

9

they tend to provide quite detailed, technical information in the bug report, where
code patches, screenshots of a debugger and trace logs are attached. This way an
effort is made by the bug initiator to provide detailed information about the bug.

Often, in the case of customer reported bugs, it was not easy for the customers
to provide sufficient information in bug reports, as they themselves were not ex-
pert enough to provide such details. In such cases, developers would need to re-
quest details such as trace logs and memory dumps. There are two major challeng-
es to this activity: 1) it may not be clear what information would be relevant to
reproduce a bug, and 2) even when sufficient details are provided in the bug report
a developer may not be able to reproduce the bug on his own machine. The fol-
lowing is a comment by a developer:

“Sometimes, customers miss to provide very basic information in their bug report and it
takes us long time to reproduce the problem. One time, a customer missed to provide the
correct time zone and we were not able to reproduce the problem for two weeks.”

Figure 2: An excerpt from a bug report.

We observed the use of videos to provide information related to bugs. In par-
ticular, when it was important to convey some dynamic behaviors of bugs or some
difficult to explain phenomenon videos were frequently used. The developers
working on an embedded software for a power product portfolio dealt with hard-
ware such as relays, breakers and transformers. In these cases, the use of videos to
provide bug reproduction details was preferred by development teams. Here is a
comment from of the developers from power products:

“Our partner team in Finland received this bug from a customer. When they could not fix
it, they sent this bug to us. They also sent a video and trace-logs. This bug occurs once in
may be 20 times. So, it is really hard for us find out the exact reasons. The video gives a
dynamic view of the bug.”

10

In the above case, the bug was reported by a customer. However the video was
captured by a local development support team who had interacted with the cus-
tomer during the initial stages and attempted to fix the bug. The video had cap-
tured the complete hardware setup so that the development team can have a com-
prehensive knowledge of the system configuration.

There were several other cases, where bugs were reassigned to a different team
as it was not possible to reproduce it on the first try. This usually happened be-
tween local and global development teams. In such cases, the development teams
interact with each other and usually the former development team provides details
related to their bug reproduction efforts. The following is a comment left on a bug
report by a development team to give details of their bug reproduction.

“There was no straight forward procedure to reproduce this error. I had done some
random "monkey testing" for the WHMI. The WHMI was in timeout and after longer
period of time I re-authenticated with Firefox browser (Event list was the page which was
open before the timeout and SSL was enabled). After re-authentication the debugger
stopped at the breakpoint (See attached image).”

5.2 During bug reproduction…

After a bug goes through initial feasibility check, the responsible product team
manager assigns the bug to an appropriate developer of his team. Utilizing the in-
formation provided by the bug initiator, the developer attempts to reproduce the
bug on his own machine.

In the case of a customer reported bug, timing becomes an important factor.
Depending on the company’s contract with customers, developers need to fix the
bug and dispatch results in a week to 10 days. Hence, the reproduction needs to
happen as soon as possible with minimal delays. For developers reproducing a bug
require some effort in changing their current system configurations. Some devel-
opment teams had access to a testing lab, where they can reproduce or test on spe-
cialized machines. However, the majority of developers were initially using their
own machines for reproducing bugs and only when it was not possible to repro-
duce bugs, they went to the testing lab. The following is a comment made by a de-
veloper on how time consuming reproduction can be.

“Our team has a very dynamic bug-fixing process, although I do feel that it sometimes
hampers our development process. When we get a bug, we have to remove our existing
system settings and stop our ongoing development work, apply the customer’s
configurations, load all the software customer has been using. So, in all we end-up
spending 1-2 days in only creating the right setup.”

Developers rely heavily on the information supplied by customers; hence they
tend to work with the data that is in bug trackers. Apart from the system configu-
ration data, customers provide steps for reproducing, screenshots of the software’s
UI (e.g. figure 2), and a description of the problem referring to observed and ex-
pected behaviors. For customers, supplying this type of information is relatively

11

easy as it is visible and observable. However, in case of a system crash or hang,
the above mentioned information may not allow developers to successfully repro-
duce a bug and they often ask for more information from the customers. Often,
customers themselves would not know or remember what exactly they did which
caused the problem such as the system crash or hang. In such cases, developers try
to extract trace logs and memory dumps from the customers’ systems.

In cases, where it was not possible to reproduce a bug based on the given in-
structions, especially when bugs occur on the server, developers were able to re-
motely log into the customers’ system and observe its behavior. Generally, cus-
tomers allow remote log-in only when the system is not live. Additionally,
developers use ‘debug DLLs’ to generate memory dumps from remotely debug
customer’s system. Here is a comment made by a developer:

“In a scenario where we cannot reproduce a bug on our own machine, we have the option
of placing our debug DLLs in the customer’s system and we can try to collect memory
dumps this way. If we are able to reproduce then we use WinDBG debugger to debug the
system.”

There were also some challenges with the input that customers’ were providing
in bug trackers. In a small number of cases, developers reported that they received
insufficient information from customers. There were examples where customers
provided only a screenshot of their system or provided minimal description of the
problem they were facing. In such cases, developers would randomly create use
cases with certain interactions and try to reproduce bugs. The following is a com-
ment made by one developer:

“Recently, we had a bug which we have not been able to reproduce, till now. We have a
Chinese version of our software and a customer reported a bug where Chinese fonts
looked too small. All we had in the bug tracker was a screenshot of the system. No further
information was provided. So we tried to reproduce this bug in different OSes. We tried
Windows 7, 2008, Advanced Server R2, XP. We also changed the themes of the
Windows, because themes also affect the font size. Our initial guess was Windows 7 as
the title bars in the screenshot was matching it. When all these attempts failed, we asked
the customer and he clarified that he was using Windows 2008 Advanced Server with the
theme of Windows 7. Even then, we haven’t been able to reproduce this bug in the
customer’s suggested environment.”

Following the completion of our observation and interview sessions with all
our participants, we sent out a questionnaire based on their qualitative feedback. A
section of this questionnaire was about exploring developers’ preference on ‘what
type of bug reproduction information they prefer from customers or testers’. We
selected eight of the most frequently mentioned items from their feedback and
asked them to rate these on a five-point Likert scale. Our main intention here was
to validate the feedback of our participants and compare the importance of these
individual items with one another. These eight items were: system configuration
details (e.g. OS and product details, versions, hardware and software model);
memory dumps, trace logs, debug DLLs, steps to reproduce, visual information
(e.g. screenshots of software interface, videos); simulator or application used for
testing; and observed and expected behaviors of the system. The result of this ex-

12

ercise is provided as a chart in figure 3. We found that ‘steps to reproduce’ (
=4.63) scored highest as the most preferred item for reproducing bugs, whereas
the use of ‘trace logs’ (=4.5) was also highly rated. ‘Debug DLLs’ (=3.25) and
‘simulator/application’ (=3.56) scored lower in our questionnaire, which sug-
gests that these items served a niche requirement of our participants. These two
items were by no means less important to the developers; in fact, these were used
when other items turned out not to be helpful in reproducing a bug.

Figure 3: Average rating of our participants’
preference for different bug reproduction in-
formation (n=16).

Fig. 4. Average rating of our partici-
pants’ perceived advantages of bug re-
production (n=16).

5.3 After a bug is reproduced…

Once developers are able to reproduce bugs, the fixing of bugs and further actions
become clearer. Developers mentioned two main advantages of successful bug re-
production: 1) reducing the amount of fixing efforts and 2) giving confidence to
developers in future actions on the bug.

When developers successfully reproduce bugs, using for example trace logs or
memory dumps, they are actually able to locate specific lines of code where there
is a problem. So, rather than looking and checking through a large amount of code
– spread across different files, they reduce their efforts by going directly to the
point where they need some fixing. Additionally, this also reduces their efforts for
debugging, as the reproduction process indicates where a problem situated. The
following are comments from two different developers:

-- “If I get steps to reproduce a bug, I will not have to look at other flows in the code. I
just have to follow the flow that is described in the bug reproduction steps. For example,
if there is a crash in a system, there could be more than one reason why it crashed. But it
is important to know that during which activity it crashed, if we know these last two or
three steps of the user then we are able to point out what exactly caused the crash.”
-- “Bug reproduction helps in reaching functional level problems. It in fact gives a
shortcut to reach to the problem, without having to go through the whole code.”

13

In addition to reducing the overall efforts, bug reproduction also helps in sup-
porting and informing further activities on bugs. Once a bug is reproduced, devel-
opers have to provide an analysis of the impact of the bug fix and provide details
about what needs to be changed in the current system, what other features will be
affected by the change, where else changes will be needed and provide test scenar-
ios, among other things. As a testing team and a QA team will be part of the bug-
fixing activity, they will provide their input on the proposed fix and analysis pro-
vided by the developer. The testing team will create their own test beds based on
developers work and the QA team will verify the quality of the fix and provide
their feedback on the bug tracker itself. The product manager and other senior lev-
el stake-holders would then take a call on how to proceed: whether to send this fix
to the customer or add it to the next product release.

The questionnaire that we developed also had a question related to this part of
the bug reproduction. Based on the observation sessions and interview feedback
from our developers, we wanted to validate certain categories based on the ques-
tion: ‘how does bug reproduction help’. From their qualitative feedback, we se-
lected six categories: understanding of bug patterns, limiting debugging efforts,
locating fault in code areas, creating test cases, impact analysis and ensuring bug
fix. On a five-point Likert scale, we asked all the 16 participants to rate these cat-
egories. As we described in the previous section, our main intention here was to
validate the feedback of our participants and compare the importance of these in-
dividual items with one another. The result of this exercise is provided as a chart
in figure 4. This figure shows that there is no strong difference among these cate-
gories. We found that ‘understanding the bug pattern’ (=4.29) and ‘ensuring bug
fix’ (=4.18) scored relatively higher. As such these two categories do not lead to
any technical improvements for developers and other stake-holders. Rather, these
two results point to the improved confidence level of developers. Understanding
the bug pattern and getting an assurance of fixing a bug are the two subjective ad-
vantages a successful bug reproduction brings. Other categories such as impact
analysis (=3.81), creating test-cases (=3.88) and locating fault in code areas (

=4.05) are the examples of technical improvements that bug reproduction sup-
ports.

6 Discussion

Studies [11, 15, 19] have shown that software developers spend a large amount of
time on code evolution, bug-fixing and other maintenance related activities. From
an HCI perspective, we have brought out the social side of software bug-fixing –
in particular the practices related to bug reproduction. Unlike the studies done in
the software engineering community [4, 16, 17, 18, 21], our study has focused on
gaining access to the in-situ, natural practices of developers working on real-world
problems.

14

6.1 Challenges to bug reproduction

Our findings show that bug reproduction is a highly communication intensive ac-
tivity. In our study, we found three major challenges to current bug reproduction
practices: 1) lack of details from customers, 2) tedious logistical efforts, and 3)
contextual issues of bugs.

Bug reproduction relies heavily on the inputs from customers. We found that
developers often find insufficient information for reproducing bugs provided by
customers. As a result they based their bug reproduction on previous experiences
and hunches. This was shown in one of the examples where a developer who was
provided with a screenshot of a bug, had to use his hunch to determine the OS of
the customer’s machine and had to try several different OS versions. Similarly, lo-
gistical efforts needed to reproduce a bug also posed a challenge. When a bug was
reported, in order to reproduce it developers needed to configure their machine
and apply the same setting in which the bug was reported at the customer’s site.
This would involve changing the OS of their local machine for the version on
which the buggy software product runs. Importantly, when such an effort is re-
quired, developers had to interrupt their on-going work and carry out changes in
their machines and get back to the original settings when a bug is reproduced and
fixed. Thirdly, the contextual issues at a customer’s site may not be easily predict-
able. In such cases, a customer may not be aware of the information that is re-
quired by the development team for solving a problem. For example, in the cases
of a system crash or a system hang, it was not always possible for a customer to
know the previous steps that led to the problem – which are typically required to
reproduce such a bug.

6.2 Interaction with customer

Developers rarely had direct interactions with customers for discussing bug repro-
duction related issues. The local and global support centers facilitate communica-
tion between both sides. In some cases, product managers of development teams
get involved as mediators in this chain of communication. The local and global
support professionals are not technically skilled to understand bugs in detail or to
know if the information provided by customers is sufficient. Additionally, the lan-
guage used by bug reporters may be very different from customer to customer. In
many cases, customers would only be able to talk about the UI related interac-
tions. Another issue when interacting with customers is that developers often face
difficulty in accessing required information. At times, when developers would like
to get access to trace-logs from a customer’s machine they need to properly in-
struct their customers on how to install such patches that will yield trace-logs.

15

6.3 Practical and subjective sides of bug reproduction

Bug reproduction offered both practical and subjective advantages. On the practi-
cal side, bug reproduction helped developers locate the area where bugs were pre-
sent in a quicker way, allowed them to carry out an impact analysis and helped
them in creating use cases and scenarios for developing their fixes. Importantly,
we also observed that there was a strong experiential side to bug reproduction ac-
tivities. The main purpose of carrying out bug reproduction is for developers to be
able to observe and experience how a bug occurs and how it behaves. This experi-
ence of being able to observe a bug is what adds to the confidence level of devel-
opers. Our results have shown the perceived advantages that a successful bug re-
production brings, such as increasing developers’ confidence level by ensuring the
bug fix and by providing indications about bug patterns. These aspects do not
bring any technical advantages to developers, but they are perceptual and experi-
ential in nature [11].

7 Implications

One of the most important aspects of bug reproduction is that it facilitates devel-
opment teams not only to visualize a problem on their own machines, but in the
process of reproducing a bug, it provides useful information about future activities
related to bug-fixing. However, bug reproduction brings several challenges. A ma-
jor problem that we observed was about communicating the right information, as
in some cases customers provided insufficient information and in other cases cus-
tomers did not know what information needs to be provided.

There are two important implications on the topic of supporting communication
between customers (or bug reporters) and development teams. One implication is
on developing tools that support customers in sufficiently understanding the en-
countered problems so that they can better provide appropriate and relevant in-
formation to the developer for fixing the bug. For example, tools may be devel-
oped to monitor activities of customers and on request or during a problem display
records of these activities on an abstraction level that is adequate for the customer.
This will empower customers to keep an account of their activities and provide
relevant details at the time of reporting bugs. The second design implication is
about supporting the automatic retrieval of ‘relevant’ information from a custom-
er’s local setup and making them available to the developers’. One of the ways
this can be done is through the use of tracing mechanisms. Developers can build
tracing mechanisms as a part of the software product that can be used to trace data
related to the software usage in the field. This type of tracing could, for example,
have different levels (mild, normal, extreme) which can be changed during
runtime. Since tracing may increase the load on the software, the feature can be
adapted based on the required level of detail. This way, whenever there is a bug

16

reported in the system a responsible developer can easily extract the trace-log and
can extract details about what led to such a bug. Privacy can be a major issue here
as bugs reported by customers may have sensitive information. An approach simi-
lar to Casto et al. [6] could be explored to ensure that real values and data does not
get misused. In addition to collecting the activity logs and trace logs, systems
could also collect some contextual information related to the software setup (e.g.
OS details) and configuration at place at the customer’s site.

A bug tracking system is central in supporting communication and coordination
between different parties involved in bug-fixing activities. Apart from some in-
formal discussions on the phone, all important information is provided in the bug
tracker. To deal with the issue of insufficient information provided by a customer,
a template-based approach in bug trackers can be used. In this case, the bug track-
er can have a dedicated section for bug reproduction where customers and support
centers need to provide all the relevant information that may be required by a de-
veloper. Certain details can be made mandatory, for example, providing software
product details, customers’ system configurations, bug descriptions and other rel-
evant details. Although, we did not generate any strong evidences in our research,
developers tend to agree that certain information is required to deal with certain
type of bugs. For example, in the cases of a software crash and hang, the use of
trace-logs becomes very important. Similarly, a memory leak issue could also be a
potential reason for software crash or hang, and in such cases memory dumps are
also required by developers to study the bug. By making such details mandatory in
a bug tracking system, a lot of time can be saved from a developers’ point of view.
Even better would be to dynamically adapt the template to the kind of bug report-
ed and the system used, given that different systems might require different infor-
mation for bug reproduction. We suggest that a detailed study can answer what
kind of information is required by developers for specific bug types.

Our findings show that there are multiple people involved in the bug reproduc-
tion cycle, e.g. customer support professional, product managers, developers, test-
ers and customers. Bug tracking systems should be appropriately integrated into
the work environments of these different stakeholders, for example, a simple and
natural language interface support for customers. Bug tracking systems can also
add features for bug annotations or adding metadata so that better searching, filter-
ing and sorting can be supported [3].

8 Conclusion

Bug reproduction is a social activity that involves participation from several stake
holders besides developers and customers. Our findings show that the role of cus-
tomers goes beyond merely reporting bugs. In fact, their interactions and inputs
are needed at various stages of bug reproduction. From an ethnographic field
study in an industrial setting, we examined current practices of bug reproduction
and elicited challenges that developers face. Our results showed that developers

17

find ‘steps for reproduction’ and ‘trace logs’ to be the most important information
for reproducing bugs. At the same time, it showed that bug reproduction is as
much a confidence building measure as a technical procedure that developers fol-
low at the beginning of a bug-fixing activity. Based on our findings, we also pro-
vide several design recommendations such as the use of tracing and monitoring
mechanisms, adding new features (templates and annotations) to bug tracking sys-
tems and appropriately integrating them into the work environments of different
stakeholders.

9 References

1. Ackerman, M. S., & Halverson, C. Considering an organization's memory. In Proceedings of
Computer supported cooperative work. pp. 39-48. (1999), ACM.

2. Avram, G., Bannon, L., Bowers, J., Sheehan, A., & Sullivan, D. K. Bridging, patching and
keeping the work flowing: defect resolution in distributed software development. Computer
Supported Cooperative Work, 18 (5-6), 477-507, (2009), Springer.

3. Bertram, D., Voida, A., Greenberg, S., & Walker, R. Communication, collaboration, and
bugs: the social nature of issue tracking in small, collocated teams. In Proceedings of the
ACM conference on Computer supported cooperative work. (2010), pp. 291-300. ACM.

4. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T. What
makes a good bug report? In Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering. (2008) pp. 308-318.

5. Breu, S., Premraj, R., Sillito, J., and Zimmermann, T. Information needs in bug reports: im-
proving cooperation between developers and users. In Proceedings of the 2010 ACM confer-
ence on Computer supported cooperative work (2010), 301-310. ACM.

6. Castro, M., Costa, M., & Martin, J. P. Better bug reporting with better privacy. ACM
SIGARCH Computer Architecture News, (2008). 36(1), 319-328.

7. Corbin, J., & Strauss, A. (Eds.). Basics of qualitative research: Techniques and procedures
8. Grinter, R. E. (1996). Supporting articulation work using software configuration manage-

ment systems. Computer Supported Cooperative Work (CSCW), 5(4), 447-465.
9. Gutwin, C., Penner, R., & Schneider, K. Group awareness in distributed software develop-

ment. In Proceedings of the 2004 ACM conference on Computer supported cooperative work
(pp. 72-81). ACM.

10. Halverson, C. A., Ellis, J. B., Danis, C., & Kellogg, W. A. Designing task visualizations to
support the coordination of work in software development. In Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work. (2006), 39-48. ACM.

11. Müller, S. and Fritz, T. Stakeholders’ Information Needs for Artifacts and their Dependen-
cies in a Real World Context. Int'l Conference on Software Maintenance (ICSM), (2013), pp.
290-299. IEEE.

12. Herbold, S., Grabowski, J., Waack, S., & Bünting, U. Improved bug reporting and reproduc-
tion through non-intrusive GUI usage monitoring and automated replaying. In IEEE 4th In-
ternational Conference on Software Testing, Verification and Validation Workshops, (2011),
232-241.

13. Herbsleb, J. D., Mockus, A., Finholt, T. A., & Grinter, R. E. Distance, dependencies, and de-
lay in a global collaboration. In Proceedings of the 2000 ACM conference on Computer sup-
ported cooperative work (pp. 319-328). ACM.

14. Holtzblatt, K., Wendell, J. B., & Wood, S. Rapid contextual design: A how-to guide to key
techniques for user-centered design. (2005), Elsevier.

18

15. Jones, C. The Economics of Software Maintenance in the Twenty First Centry. Unpublished
manuscript. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7697 (last accessed
22/11/2013)

16. Just, S., Premraj, R., & Zimmermann, T. Towards the next generation of bug tracking sys-
tems. In IEEE Symposium on Visual Languages and Human-Centric Computing, (2008).
VL/HCC. 82-85. IEEE.

17. Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. An exploratory study of how devel-
opers seek, relate, and collect relevant information during software maintenance tasks. IEEE
Transactions on Software Engineering, (2006) 32(12), 971-987.

18. LaToza, T. D., Venolia, G., & DeLine, R. Maintaining mental models: a study of developer
work habits. In Proceedings of the 28th international conference on Software engineering.
(2006) 492-501. ACM.

19. Lientz, B. P., Swanson, E. B., & Tompkins, G. E. Characteristics of application software
maintenance. Communications of the ACM, (1978), 21(6), 466-471.

20. Martin, D., Rooksby, J., Rouncefield, M., & Sommerville, I. 'Good' Organisational Reasons
for'Bad'Software Testing: An Ethnographic Study of Testing in a Small Software Company.
In 29th International Conference on Software Engineering, 2007. ICSE 2007. IEEE.

21. Ohira, M., Hassan, A. E., Osawa, N., & Matsumoto, K. I. The impact of bug management
patterns on bug-fixing: A case study of Eclipse projects. In 28th International Conference on
Software Maintenance, (2012) 264-273. IEEE.

22. Olson, J. S., & Olson, G. M. (2003). Culture surprises in remote software development
teams. Queue, 1(9), 52.

23. Schroter, A., Bettenburg, N., & Premraj, R. Do stack traces help developers fix bugs? In 7th
IEEE Working Conference on Mining Software Repositories (2010), pp.118-121.

24. Schmidt, K., & Simone, C. Coordination mechanisms: Towards a conceptual foundation of
CSCW systems design. Computer Supported Cooperative Work. (1996). 5(2-3), 155-200.
Kluwer Academic Press.

25. Star, S.L. and Griesemer, J.R. Institutional ecology, ‘translations’ and boundary objects:
Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social
Studies of Science 19, 3 (1989), 387–420.

26. Tellioğlu, H., & Wagner, I. (1999). Software cultures. Communications of the ACM, 42(12),
71-77.

27. Zhang, F., Khomh, F., Zou, Y., & Hassan, A. E. An empirical study on factors impacting
bug-fixing time. In 19th Working Conference on Reverse Engineering (WCRE), (2012), pp.
225-234. IEEE.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7697

